青蒿琥酯诱导活性氧依赖性的细胞凋亡

周陈娟 潘文良 陈同生

(华南师范大学激光生命科学研究所激光生命科学教育部重点实验室,广东广州 510631)

摘要 一般认为青蒿琥酯(ART)引起细胞凋亡是因为产生了活性氧(ROS),从而启动多种凋亡途径。利用荧光染料 2',7'-二氯荧光素二乙酸酯(DCFH-DA)和罗丹明(Rhodamine)123 分别表征细胞中 ROS 的水平以及线粒体的 膜电位,然后采用动态显微荧光成像技术在单个活细胞中实时监测 ART 诱导人类肺腺癌细胞(ASTC-a-1)凋亡过 程中 ROS 的产生和线粒体膜电位的下降。结果显示 0~50 μg/mL 质量浓度的 ART 均能引起细胞活力的降低, 40 μg/mL 质量浓度的 ART 能明显产生 ROS,并且引起细胞线粒体膜电位的显著下降;CCK-8 试剂对细胞活性的 检测结果表明,ROS 清除剂 N-乙酰半胱氨酸(NAC)可以显著抑制 ART 诱导的细胞凋亡和线粒体膜电位下降,证 明 ART 诱导了 ROS 依赖性的细胞凋亡和线粒体膜电位下降。

关键词 医用光学;共聚焦显微荧光成像术;青蒿琥酯;细胞凋亡;活性氧;线粒体膜电位
 中图分类号 Q279; R318.51
 文献标识码 A doi: 10.3788/CJL201138.0204003

Artesunate Induces Reactive Oxygen Species-Mediated Apoptosis

Zhou Chenjuan Pan Wenliang Chen Tongsheng

(Key Laboratory of Laser Life Science, Ministry of Education, Institute of Laser Life Science, South China Normal University, Guangzhou, Guangdong 510631, China)

Abstract It is known that artesunate (ART) induced apoptosis is due to the reactive oxygen species (ROS) generation which triggers many apoptosis. DCFH-DA and Rhodamine 123 were used to probe the level of ROS and mitochondrial membrane potential. Time-lapse confocal fluorescence microscopy was used to monitor the dynamics of ROS generation and the loss of mitochondrial membrane potential during ART-induced human lung adenocarcinoma cells (ASTC-a-1) apoptosis. The data show that the cell ability can be reduced by ART of $0 \sim 50 \ \mu g/mL$. ART of 40 $\mu g/mL$ which be used to generate significantly ROS can induce notablely loss of mitochondrial membrane potential. Results show that N-acetylcysteine (NAC), a scavenger of ROS, can significantly inhibits the ART-induced apoptosis and the loss of mitochondrial membrane potential and ART induces ROS-mediated apoptosis and loss of mitochondrial membrane potential.

Key words medical optics; confocal fluorescence microscopy imaging; artesunate; apoptosis; reactive oxygen species; mitochondrial membrane potential

OCIS codes 170.0180; 170.1420; 170.3880

1 引 言

青蒿琥酯(ART),化学名为二氢青蒿素 1,2-α-琥珀酸酯,它是具有倍半萜结构的抗疟药青蒿素的 衍生物之一。由于青蒿素及其衍生物起效快、毒性 低、疗效确切,世界卫生组织积极提倡用它们来治疗 严重的和有抗药性的疟疾^[1~3]。近年来,越来越多的研究证明,青蒿素及其衍生物还具有抗肿瘤的作用^[4~6],该作用基于抑制增殖、抗血管生成、诱导细胞凋亡和氧化应激等细胞生化过程^[7~9]。

目前研究表明 ART 的抗癌机理类似于其抗疟

收稿日期: 2010-07-05; 收到修改稿日期: 2010-09-06

基金项目:国家自然科学基金(31071218)和广东省自然科学基金(8151063101000031)资助课题。

作者简介:周陈娟(1987—),女,硕士研究生,主要从事显微荧光成像及其应用等方面的研究。

E-mail: zhouchenyu1987@126.com

导师简介:陈同生(1964—),男,教授,硕士生导师,主要从事显微荧光成像及其应用等方面的研究。 E-mail: chentsh@scnu.edu.cn(通信联系人) 疾机理:ART的结构中有一个内过氧化桥,它能与 肿瘤细胞内富含的铁离子发生化学反应,形成自由 基^[10]。这些自由基即活性氧(ROS)可进一步通过 各种信号级联反应造成细胞损伤和导致细胞死 亡^[11]。细胞凋亡主要通过由死亡受体介导的外源 性途径和由线粒体介导的内源性途径^[12]。线粒体 膜通透性的改变是凋亡的主要表现。线粒体外膜被 破坏后,随之表现为线粒体内外膜电位的改变和一 些例如细胞色素 C 和凋亡诱导因子(AIF)等促凋亡 因子的释放^[12,13]。

激光扫描共聚焦显微镜(LSCM)技术是 20 世纪 80 年代发展起来的一项广泛应用于细胞生物研究的 光学成像技术^[14,15],与传统光学显微镜相比,它具有 更高的分辨率,能够同时观察多重荧光并可形成清晰 的三维图像等优点。不同的荧光物质具有不同的激 发光谱和发射光谱,能够发出不同颜色的荧光,因而 把它们与生物分子联系在一起可以用来研究许多生 物医学问题^[16~20]。随着多种荧光标记探针的发展和 探测技术的进步^[21,22],LSCM已经在生物医学以及临 床病理检测研究领域得到广泛的应用^[23,24]。

本文利用 LSCM 技术,结合各种荧光染料,在人 类肺腺癌细胞中,检测了 ART 诱导细胞凋亡过程中 ROS 产生与线粒体膜电位变化和细胞死亡的联系。

2 材料与方法

2.1 实验材料

LSM 510/ConfoCor2型LSCM购于德国Zeiss公司,Cell Counting Kit-8(CCK-8)试剂盒购自日本同仁 化学研究所(Dojindo),达尔伯克改良伊格尔(DMEM) 培养基购于美国Gibco公司,ART购买自中国Bide 药物公司,肺腺癌细胞ASTC-a-1来自暨南大学,N-乙酰半胱氨酸(NAC),Hoechst 33258和罗丹明 (Rhodamine)123购于美国Sigma公司,2',7'-二氯荧 光素二乙酸酯(DCFH-DA)购于日本Wako公司。

2.2 细胞培养及处理

用体积分数为 10%的新生牛血清 DMEM 培养 液培养人类肺腺癌细胞 ASTC-a-1,待细胞融合至 体积分数为 80% ~ 90% 汇合后用体积分数为 0.25%的胰蛋白酶消化传代,以每培养皿 1×10⁴ 个 细胞和 500 μ L 培养液接种于细胞培养皿中,接种后 放入培养箱(培养环境为 37 °C,体积分数为 5%的 CO₂)继续培养。

2.3 细胞活性检测

细胞活性的检测采用 CCK-8 的方法。将 100 μL

细胞悬液(每孔 3000~4000 个细胞)接种于 96 孔板 内,置于 37 ℃,体积分数为 5%的 CO₂ 饱和湿度培养 箱内培养 24 h。然后更换新鲜培养液,并将样品分为 对照组以及加药组,每组 4 个重复孔。加药处理 48 h 后,更换 96 孔板中的培养液,并且每孔加入体积分数 为 10%的 CCK-8 试剂,在培养箱内孵育 1 h。利用酶 标仪(Infinite M200, Tecan, Austria)测量其在450 nm 波长处的吸光度,该吸光度与细胞活性成正比。

2.4 细胞凋亡的检测

细胞凋亡检测使用 Hochest 33258 进行染色检 测。将 ASTC-a-1 细胞传代培养 24 h,再加入相应 药物处理,然后使用磷酸缓冲液(PBS)清洗三遍,然 后加入终浓度为 1 μmol/L 的 Hochest 33258,置于 培养箱避光染色 10 min,用 PBS 清洗三遍,在激发 光源是汞灯的荧光显微镜下观察细胞核型。荧光显 微镜放大倍数为 400 倍。荧光图像用数码相机 (Nikon,Tokyo,Japan)记录,分辨率为 1280 pixel× 1280 pixel。

2.5 动态监测 ROS 产生

ASTC-a-1 细胞传代培养 24 h 后,加入终浓度为 10 μmol/L 的 DCFH-DA,体积分数为 5%的 CO₂ 的 37 ℃ 培养箱避光染色 10 min,然后加入药物处理,并 在 LSCM 下进行动态监测,用氩离子激光器发出的 488 nm 激光激发,收集 2',7'-二氯荧光素(DCF),发 射荧光选用 500~550 nm 带通滤光块。

2.6 动态监测线粒体膜电位

ASTC-a-1 细胞传代培养 24 h 后,加入终浓度 为 5 µmol/L 的 Rhodamine 123,置于培养箱中避光 染色 30 min,使用 PBS 清洗三次,然后加入药物处 理 12 h,之后在 LSCM 下进行动态监测,用氩离子 激光器发出的 488 nm 激光激发,收集 DCF 发射荧 光选用 500~550 nm 带通滤光块。

3 结 果

3.1 ART 诱导浓度依赖性的细胞活力下降和细胞 凋亡的形态变化

为了找到合适的 ART 浓度来诱导细胞凋亡, 选用质量浓度分别为 0,10,20,30,40 和 50 μ g/mL 的 ART 来处理人类肺腺癌细胞 ASTC-a-1,48 h 后 用 CCK-8 检测 ART 对细胞的毒性,450 nm 波长处 的吸光度值反映了细胞的活力状况。如图 1(a)所 示[令 *P* 为分析软件中 SPSS 分析得出的两组数据 组间的差异概率,且对照组(control)的细胞活力为 100%。*:*P*<0.05,**:*P*<0.01 代表与 control 相比。],细胞活力随着 ART 浓度的增加而下降,这 意味着 ART 对细胞活力的影响有浓度依赖性。这 里未指明的 ART 质量浓度约定为 40 μg/mL。

为了验证 ART 诱导细胞死亡的方式,首先采用 LSCM 来观察细胞的形态变化。用 ART 处理后,细胞数目明显减少,细胞变圆,几乎所有细胞均出现明显皱褶甚至破裂,如图 1(b)所示。然后采用

(a)

Hoechst 33258 染色观察细胞核形态学上的变化。 在 ART 处理之后,细胞核固缩,表明 ART 诱导细 胞活力降低的方式为凋亡,如图 1(b)所示,该透射 图为微分干涉相衬(DIC)显微图,利用 Hoechst 33258 染色细胞核,采用放大倍数为 400 的电荷耦 合器件(CCD)采集图像。

图 1 (a) ART 诱导依赖浓度的细胞活性下降,(b)ART 处理 48 h 后的细胞形态以及细胞核形态特征变化 Fig. 1 (a) ART induced concentration-dependent decline of cell viability, (b) ART-induced morphological and nuclear morphology changes of cells after 48 h

3.2 ART 诱导 ROS 依赖性的细胞活力下降

为了研究 ART 诱导的细胞凋亡是否有 ROS 产生,采用检测活性氧的染料 DCFH-DA 并运用 LSCM 来实时监测细胞内的 ROS 产生情况。细胞 经 DCFH-DA 染色 10 min 后,加入 ART 并立即在 LSCM 下进行动态监测,每隔 3 min 采集一幅图。 结果显示,ART 处理后细胞内 DCFH-DA 水解生 成的 DCFH 被氧化为 DCF, DCF 被激发发出荧光 且荧光强度逐渐增强,在120 min 内达到最大值,如 图 2(a)所示,表明 ART 诱导细胞内有 ROS 的产 生。对应图 2(a), ROS 产生的动态过程如图 2(b) 所示,对照组中 ROS 的水平保持不变,而 ART 处 理组 ROS 逐渐上升,并有两次急剧升高的过程,显 示了 ROS 的产生具有爆发的特征。

图 2 (a) ART 诱导 ROS 的产生,(b) ROS 上升的动态过程,(c) 各组对细胞毒性的比较 Fig. 2 (a) ART induced ROS generation, (b) dynamic process of ROS rise, (c) comparison of different groups' virulence to cells

为了检测 ART 产生的 ROS 对人类肺腺癌细胞的细胞活性的影响,采用 ROS 清除剂 NAC 提前 1 h 预处理细胞,然后在 ART 处理 48 h 后检测细胞 活性,如图 2(c)所示(**: P<0.01 代表与对照组 相比, #: P<0.05 代表与单加 ART 组相比)。结 果表明 NAC 可以显著抑制 ART 诱导的细胞活性 下降,显示 ART 诱导了 ROS 依赖性的细胞凋亡。

3.3 ART 诱导 ROS 依赖性的膜电位下降

线粒体在细胞凋亡过程中起着关键性的作用, 其膜电位的下降是膜通透性改变和细胞凋亡因子释 放的主要特征。为了检测 ART 处理产生的 ROS 是否对 ART 诱导的线粒体膜电位的下降有影响, 采用 Rhodamine 123 的荧光强度表征线粒体膜电位, 然后利用荧光共聚焦显微成像术在单个活细胞中动 态监测 ART 处理 12 h 时线粒体膜电位的下降过程。 细胞经 Rhodamine 123 染色 30 min,然后在 LSCM 下 进行动态监测,图像采集时间间隔为10 min,如 图 3(a)所示。结果显示,ART 处理组约 130 min 后 线粒体膜电位开始下降,而在 ART 处理前提前1 h 加入 NAC 的预处理组膜电位在 ART 处理 12 h 后约 450 min 后才开始下降,表明 ART 诱导了 ROS 依赖 性的线粒体膜电位下降,而 NAC 抑制了 ART 诱导的 线粒体膜电位下降。图 3(b)给出了对应线粒体膜电 位下降的动态时间曲线。

4 结 论

研究结果显示,随着 ART 处理时间的延长,染料 DCFH-DA的荧光强度也随之上升,表明细胞内的 ROS的水平在不断地增加并于 40 min 和 110 min 各 有一次急剧上升,表明 ART 诱导的 ROS 产生有爆发 性特点。线粒体是细胞内产生 ROS 的主要源头,因 此也是氧化损伤的主要目标^[25]。据推测,110 min ROS的爆发上升极可能是在线粒体被破坏之后。 有研究证明 ROS 能参与死亡受体和配体表达以及 之后的死亡受体介导的凋亡^[26,27]。这里显示 ART 能诱导 ROS 依赖性的线粒体膜电位下降,表明 ART 诱导 ASTC-a-1 凋亡经历了内源性凋亡。 ART 诱导 ASTC-a-1 中产生的 ROS 是否直接诱导 线粒体膜电位下降,是否直接触发促凋亡蛋白诱导 凋亡?线粒体膜电位下降之后,哪种或哪几种促凋 亡因子被释放? 起主要的促凋亡作用是外源性途径 还是内源性途径?这些问题有待进一步研究。

参考文献

- 1 R. K. Haynes. Artemisinin and derivatives: the future for malaria treatment? [J]. Curr. Opin. Infect. Dis., 2001, 14 (6): 719~726
- 2 N. J. White. Antimalarial drug resistance[J]. J. Clin. Invest., 2004, 113(8): 1084~1092
- 3 N. J. White, P. L. Olliaro. Strategies for the prevention of antimalarial drug resistance: rationale for combination

chemotherapy for malaria[J]. *Parasitol. Today*, 1996, 12(10): $399 \sim 401$

- 4 T. Efferth, H. Dunstan, A. Sauerbrey *et al.*. The anti-malarial artesunate is also active against cancer[J]. *Int. J. Oncol.*, 2001, 18(4): 767~773
- 5 N. P. Singh, H. Lai. Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells [J]. *Life Sci.*, 2001, **70**(1): 49~56
- 6 R. Dell' Eva, U. Pfeffer, R. Vene *et al.*. Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate [J]. *Biochem. Pharmacol.*, 2004, **68**(12): 2359~2366
- 7 H. J. Zhou, W. Q. Wang, G. D. Wu *et al.*. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells [J]. *Vasc. Pharmacol.*, 2007, **47**(2-3): 131~138
- 8 H. H. Chen, L. L. You, S. B. Li. Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cell [J]. *Cancer Lett.*, 2004, **211** (2): 163~173
- 9 J. H. Du, H. D. Zhang, Z. J. Ma et al.. Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo [J]. Cancer Chemother. Pharmacol., 2009, 65(5): 895~902
- 10 T. Efferth, A. Benakis, M. R. Romero *et al.*. Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron [J]. *Free Radic. Biol. Med.*, 2004, **37**(7): 998~1009
- 11 K. M. Anderson, T. Seed, D. Ou *et al.*. Free radicals and reactive oxygen species in programmed cell death [J]. *Med. Hypotheses*, 1999, **52**(5): 451~463
- 12 D. R. Green, G. Kroemer. The pathophysiology of mitochondrial cell death [J]. Science, 2004, 305 (5684): 626~629
- 13 J. C. Martinou, D. R. Green. Breaking the mitochondrial

barrier[J]. Nat. Rev. Mol. Cell Biol., 2001, 2(1): 63~67

- 14 Tang Yonghong. The application of laser scanning confocal microscope on the study of apoptosis induced by laser irradiation [J]. Acta Laser Biology Sinica, 2006, 15(5): 532~535 唐永红. 激光扫描共聚焦显微镜在激光照射诱导细胞凋亡研究 中的应用[J]. 激光生物学报, 2006, 15(5): 532~535
- 15 A. A. Marghoob, C. A. Charles, K. J. Busam *et al.*. In vivo confocal scanning laser microscopy of a series of congenital melanocytic nevi suggestive of having developed malignant melanoma[J]. Arch Dermatol., 2005, 141(11): 1401~1412
- 16 Li Zuanfang, Huang Zufang, Chen Rong *et al.*. Two-photon fluorescence imaging of thyroid tissue[J]. *Chinese J. Lasers*, 2009, **36**(3): 765~768 李钻芳,黄祖芳,陈 荣等. 甲状腺组织的双光子荧光成像[J].
- 中国激光, 2009, 36(3): 765~768
 17 Chen Guannan, Huang Zufang, Chen Rong *et al.*. Cellular localization analysis of 5-ALA induced Pp IX in DHL cells[J]. Acta Optica Sinica, 2009, 29(6): 1605~1608
 陈冠楠, 黄祖芳, 陈 荣 等. DHL 细胞中 5-ALA 代谢 Pp X 的

定位分析[J]. 光学学报, 2009, **29**(6): 1605~1608

- 18 Li Jing, Zeng Hongjuan, Pang Xiaofeng. Study of autofluorescence spectrum between hepatic carinoma cell and hepatic cell[J]. Acta Optica Sinica, 2009, 29(8): 2261~2263
 李 静,曾红娟,庞小峰. 肝癌细胞和正常肝细胞的自体荧光光 谱研究[J]. 光学学报, 2009, 29(8): 2261~2263
- 19 Ma Jun, Zhang Xining, Xu Ming *et al.*. Detection of gastric cancer peritoneal dissemination in nude mouse model by laserinduced fluorescence spectroscopy in vivo[J]. *Chinese J. Lasers*, 2009, **36**(10): 2566~2570

马 君,张奚宁,徐 明等.激光诱导荧光技术在体探测裸鼠腹 膜胃癌播散[J]. 中国激光,2009,**36**(10):2566~2570

20 Lin Xiaogang, Pan Yingjun, Guo Yongcai. Study on

autofluorescence spectral feature for cancer cell in different stages of cell cycle[J]. Acta Optica Sinica, 2009, **29**(5): 1328~1331 林晓钢,潘英俊,郭永彩. 癌细胞细胞周期自体荧光谱特征[J]. 光学学报, 2009, **29**(5): 1328~1331

- 21 Dmitry B. Zorov, Evgeny Kobrinsky, Magdalena Juhaszova et al.. Examining intracellular organelle function using fluorescent probes from animalcules to quantum dots [J]. Circulation Research, 2004, 95(3): 239~252
- 22 Rachel Jones, Meredith B. Baker, Martina Weber et al.. Molecular beacons can assess changes in expression and 3'polyadenylation of human eNOS mRNA[J]. Am. J. Physiol. Cell Physiol., 2009, 296(3): C498~C504
- 23 James M. Antonini, Tina G. Charron, Jenny R. Roberts et al.. Application of laser scanning confocal microscopy in the analysis of particle-induced pulmonary fibrosis [J]. Toxicological Sciences, 1999, 51(1): 126~134
- 24 Stacey A. Maskarinec, Christian Franck, David A. Tirrell *et al.*. Quantifying cellular traction forces in three dimensions[J]. *PNAS*, 2009, **106**(52): 22108~22113
- 25 P. Jezek, L. Hlavata. Mitochondria in homeostasis of reactive oxygen species in cell, tissues and organism [J]. Int. J. Biochem. Cell Biol., 2005, 37(12): 2478~2503
- 26 J. Nitobe, S. Yamaguchi, M. Okuyama et al.. Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to fas-mediated apoptosis in cardiac myocytes[J]. *Cardiovasc. Res.*, 2003, 57(1): 119~128
- 27 K. Izeradjene, L. Douglas, D. M. Tillman *et al.*. Reactive oxygen species regulate caspase activation in tumor necrosis factor-related apoptosis-inducing ligand-resistant human colon carcinoma cell lines[J]. *Cancer Res.*, 2005, **65**(16): 7436~7445